

Industrial Internet Consortium

Reference Architecture Dynamic Composition and Automated Interoperability Challenge

David Beberman aicas GmbH

Challenge: IIC-RA Chapter 16

Chapter 16 Dynamic Composition and Automated Interoperability

Section 16.3 Functional Components

- Dynamic Composition
- Integration Contract Management

IIC-RA Viewpoint

Chapter 7 Implementation Viewpoint

- Relevant for all architectures described
- Edge and Device software dynamic composition
- CPU and OS agnostic
- Hardware configuration aware
 - part of integration contract

"Hidden" Challenge

- Vendor Quality Assurance Department
- potential chokepoint
 - Technical Challenge
 - Proof of dynamic composition and integration automation
 - Process Challenge
 - Transition from "big bang" QA to continuous integration, verification and delivery (Agile concept)
 - Mindset Challenge
 - History is against us
 - But, Michael Barr's Trial Testimony Blackbox Testing Insufficient

Firmware Development Process

JamaicaVM

Continuous Deployment

Software Dynamic Composition Critical Features

Verifiable Component Isolation Enables

- Component Dependency Resolution
- Component Verification Automated Tools (e.g. SA)
- Component Automated Unit, System, Regression Test

Component Resource Requirements

- Core Integration Contract Data
- Output From Development and Verification

Objective: Isolation Independence

Show Stability of Software Dynamic Composition

- Transient Composition Reacting to Events
- Persistent Composition General Componet Updates
- Online "Live" Composition No Reset/Restart
- Offline Composition
 - May Require Operation Mode Change

Security Concerns!!!

Automotive Hacks!

• Fiat Chrysler Jeep Hack

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-hi ghway/

• GM ONStar

http://analysis.tu-auto.com/telematics/weekly-brief-100-gadget-hacks-gm-cars-build-defcon-hacker-confere nce?utm_campaign=TUA%2003AUG15%20Newsletter.htm&u medium=email&utm_source=Eloqua&elq=4091a7b3978a4049 217ebe887202e08&elqCampaignId=2953&elqaid=7083&elqat =1&elqTrackId=55347cd6af6941a988002bc6552eb6fc

https://threatpost.com/holes-in-progressive-dongle-could-le ad-to-car-hacks/110511

Security Level for Embedded Systems

VxWorks

https://community.rapid7.com/community/metasploit/blog/2010/08/02/shiny-old-vxworks-vulnerabilities

• QNX

https://www.fishnetsecurity.com/6labs/blog/pentesting-qnx-neutrino-rtos

https://ics-cert.us-cert.gov/advisories/ICSA-13-189-01

- Debugger port common practice
 - pdebug, qconn, netcat, qnet
 - similar for other OS's

Attack Vectors

Wired Ethernet Local/Internet

Examples of Attacks

- Fieldbus (CAN, MOD, Etc.) emulator
 - rogue packet insertion
 - reprogramming
 - jamming
- Wired Ethernet
 - snooping of data
 - insertion of bogus data

- USB Port/SD Card
 - system reprogramming
- Peripheral Device
 Compromise
 - local control
 - rogue packets, etc.
- Wifi/Bluetooth/Zigbee
 - dictionary attack
 - opaque traffic analysis

Cyber Threats

- Denial of Service
- Hijacked Bot Attack
- Dictionary Attack
- Remote commanding of physical systems
- Falsified Sensor and Control Data impacting local and distributed systems
- Breach of data privacy

Security Reference Material

- Senator Markey's Spycar Act
 - reference
- Industrial Internet Security Framework
 - Under development
- Trusted Computing Group Trusted Platform Module
 TCG TPM
- ARM Trustzone
- Intel Trusted Execution Technology (TXT)

Core Security Concepts

- Secure Hash Algorithm
 - (SHA 256)
- Symmetric Key Encryption/Decryption
 - (AES 256)
- Assymmetric Key Encryption/Decryption
 - RSA
 - ECC
- "Shielded Locations"
 - one-time programmable bits

Cyber Threat Prevention

- Dictionary Retry Delays
- Secure Outbound Connect-only Messaging
 - end-to-end client verification
- Secure Applet Sandbox
- Whitelisting
- Local bus intrustion detection

Security Concepts for JamaicaCAR & Jamaica-IoT

Combined Jamaica-IoT, Messaging & Cloud Security Domain with hardened Device operating system and hardware

JamaicaVM-IoT Security Stack

Signature-verified, Sandox-secured, Managed Process, App/Service

Signature-verified, Sandox-secured, Managed Process, App/Service Signature-verified, Sandox-secured, Managed Process, App/Service

Reliable OSGi Level Signature-verified Bundle Loading

Jamaica-IoT Virtualization Level Security Manager; API Access Control Lists; Secure Messaging Client

Operating System Level OS "Hardening"; No Network Listeners

CPU & Hardware Level Trusted/Secure/Verified Boot; Anti-Tamper Protection

JamaicaVM

JamaicaVM-IoT Security Direction

Security Direction

- Continous Whitelist Verifier
 - .JAR,.EXE,.SO Signature Verifier
 - Running process monitoring
- Encrypted App Manager
 - Symmetric Decryption with protected key
 - Obfuscation guard technology
- Fieldbus Intrusion Detection
 - Learned Patterns Based
 - Transparent

- Fi el dbus Count er measur es
 - I nt ent i onal Jami ng
 - Mode protection
 - Command count ering
 - War ni ngs/ Emer gency Shut down
 - G obal notification
- Continuous Port Scanning
 - d ose unaut horized ports
 - Identify rogue software

Software Supplychain Security

Supplychain Components

- Verification Stage Requirements
 - Toolchain
 - Code Verification
 - Supplier
 - Deployment
 - Installation
 - Runtime
 - API Permissioning

Supplychain Signatures

- Tool chain signature Aicas Certificate
- Code verification Supplier Certificate
- Supplier OEM Certificate
- Deployment OEM Certificate
- Installation OEM/Supplier/Toolchain verification
- Runtime Local Signature Verification
- API Permissions OEM/Supplier signatures

Device-as-a-Service (DaaS) Concept

Ubiquitous Software Platform

- Available on Gateways, Sensors, Actuators, Monitors, Controllers, etc.
- Modular Architecture
- Applications, Components, Subcomponents
 Hardware, OS Independence
 - Leverages available hardware and OS
 - Future Proof, heterogeneous environments

"Component Store"

DaaS Software Requirements

Secure OTA Dynamic Lifecycle

- Download, Install, Load, Run, Pause, Stop, Deinstall
- **Continuous Deployment**
- DaaS Admission Control Policy
 - Managed Resource Limits
- Standard APIs, Formally Defined Language and Programming Model
 - Worldwide software community acceptance

Support Control Systems, PLCs, etc.

- Periodic Tasks, Event-driven Tasks
- Realtime/Determinism
- Device I/O
- Industry-specific Protocols

General Resource Efficiency

Scalable with resource availability

II oT DaaS

JamaicaVM

JamaicaVM-IoT Security Stack

Signature-verified, Sandox-secured, Managed Process, App/Service

Signature-verified, Sandox-secured, Managed Process, App/Service Signature-verified, Sandox-secured, Managed Process, App/Service

Reliable OSGi Level Signature-verified Bundle Loading

Jamaica-IoT Virtualization Level Security Manager; API Access Control Lists; Secure Messaging Client

Operating System Level OS "Hardening"; No Network Listeners

CPU & Hardware Level Trusted/Secure/Verified Boot; Anti-Tamper Protection

JamaicaVM

Janaica VM Runtine & Realtine Specification for Java

RTSJ 2.0 (draft) : e.g. User Space Device Drivers

Ahead-of-Time Compiled JAR Loader and Executor OpenJDK/J2SE Java Runtime Environment

Multicore, Parallel, Concurrent, Non-blocking, Preemptible, Deterministic Garbage Collector

Jamaica Process Level Virtualization

Jamaica Reliable OSGi

Per-OSGi bundle, memory consumption limits

System Resources Constraint-based OSGi Bundle Loading Per-OSGi bundle, CPU consumption limits

> Per-OSGi bundle, Force-kill

Persistent, Non-terminating, Realtime OSGi Framework

OSGi Bundle Management Services

Exception Handling

Secure Remote Messaging Interface System Monitoring & Logging

Per-OSGi Bundle Resource Assignment

OSGi Bundle Installation Signature Verification OSGi Bundle Loading Signature Verification

Jamaica-loT Service Bus

Typical II oT DaaS Node Example

JamaicaVM

Industrial Internet Consortium

Reference Architecture Dynamic Composition and Automated Interoperability Challenge

